
Symbolic Execution with Abstract Subsumption
Checking

Saswat Anand1, Corina S. Păsăreanu2, and Willem Visser2

1 College of Computing, Georgia Institute of Technology saswat@cc.gatech.edu
2 QSS and RIACS, NASA Ames Research Center, Moffett Field, CA 94035

{pcorina,wvisser}@email.arc.nasa.gov

Abstract. We address the problem of error detection for programs that
take recursive data structures and arrays as input. Previously we pro-
posed a combination of symbolic execution and model checking for the
analysis of such programs: we put a bound on the size of the program
inputs and/or the search depth of the model checker to limit the search
state space. Here we look beyond bounded model checking and consider
state matching techniques to limit the state space. We describe a method
for examining whether a symbolic state that arises during symbolic ex-
ecution is subsumed by another symbolic state. Since subsumption is in
general not enough to ensure termination, as the number of symbolic
states may be infinite, we also consider abstraction techniques for com-
puting and storing abstract states during symbolic execution. Subsump-
tion checking determines whether an abstract state is being revisited, in
which case the model checker backtracks - this enables analysis of an
under-approximation of the program behaviors. We illustrate the tech-
nique with abstractions for lists and arrays. The abstractions encode both
the shape of the program heap and the constraints on numeric data. We
have implemented the techniques in the Java PathFinder tool and we
show their effectiveness on Java programs.

1 Introduction

The problem of finding errors for programs that have heap structures and ar-
rays as inputs is difficult since these programs typically have unbounded state
spaces. Among the program analysis techniques that have gained prominence
in the past few years are model checking with abstraction, most notably pred-
icate abstraction [3, 4, 11], and static analysis [7, 23]. Both these techniques in-
volve computing a property preserving abstraction that over-approximates all
feasible program behaviors. While the techniques are usually used for proving
properties of software, they are not particularly well suited for error detection
– the reported errors may be spurious due to over-approximation, in which case
the abstraction needs to be refined. Furthermore, predicate abstraction handles
control-dependent properties of a program well, but it is less effective in han-
dling dynamically allocated data structures and arrays [18]. On the other hand,
static program analyses, and in particular shape analysis, use powerful shape

2 Saswat Anand, Corina S. Păsăreanu, and Willem Visser

abstractions that are especially designed to model properties of unbounded re-
cursive heap structures and arrays, often ignoring the numeric program data. A
drawback is that, unlike model checking, static analyses typically don’t report
counter-examples exhibiting errors.

We propose an alternative approach that enables discovery of errors in pro-
grams that manipulate recursive data structures and arrays, as well as nu-
meric data. The approach uses symbolic execution to execute programs on un-
initialized inputs and it uses model checking to systematically explore the pro-
gram paths and to report counter-examples that are guaranteed to be feasible.
We use abstractions to compute under-approximations of the feasible program
behaviors, hence counter-examples to safety properties are preserved. Our ab-
stractions encode information about the shape of the program heap (as in shape
analysis) and the constraints on the numeric data.

We build upon our previous work where we proposed a combination of sym-
bolic execution and model checking for analyzing programs with complex in-
puts [14,19]. In that work we put a bound on the input size and (or) the search
depth of the model checker. Here we look beyond bounded model checking and
we study state matching techniques to limit the state space search. We propose
a technique for checking when a symbolic state is subsumed by another sym-
bolic state. The technique handles un-initialized, or partially initialized, data
structures (e.g. linked lists or trees) as well as arrays. Constraints on numeric
program data are handled with the help of an off-the-shelf decision procedure.
Subsumption is used to determine when a symbolic state is revisited, in which
case the model checker backtracks, thus pruning the state space search.

Even with subsumption, the number of symbolic states may still be un-
bounded. We therefore define abstraction mappings to be used during state
matching. More precisely, for each explored state, the model checker computes
and stores an abstract version of the state, as specified by the abstraction map-
pings. Subsumption checking then determines if an abstract state is being re-
visited. This effectively explores an under-approximation of the (feasible) paths
through the program. We illustrate symbolic execution with abstract subsump-
tion checking for singly linked lists and arrays. Our abstractions are similar to
the ones used in shape analysis: they are based on the idea of summarizing heap
objects that have common properties, for example, summarizing list elements
on unshared list segments not pointed to by local variables [18].

To the best of our knowledge, this is the first time shape abstractions are used
in software model checking, with the goal of error detection. We summarize our
contributions as follows: (i) Method for comparing symbolic states, which takes
into account uninitialized data. The method handles recursive structures, arrays
and constraints on numeric data. The method is incorporated in our framework
that performs symbolic execution during model checking. (ii) Abstractions for
lists and arrays that encode the shape of the heap and the numeric constraints
for the data stored in the summarized objects. (iii) Implementation in the Java
PathFinder tool and examples illustrating the application of the framework on
Java programs.

Symbolic Execution with Abstract Subsumption Checking 3

Related Work Our work follows a recent trend in software model checking,
which proposes under-approximation based abstractions for the purpose of fal-
sification [1, 2, 12, 21]. These methods are complementary to the usual over-
approximation based abstraction techniques, which are geared towards prov-
ing properties. There are some important differences between our work and
[1,2,12,21]. The works presented in [12,21] address analysis of closed programs,
not programs with inputs as we do here, and use abstraction mappings for state
matching during concrete execution, not symbolic execution. Moreover, the ap-
proaches presented in [12,21] do not address abstractions for recursive data struc-
tures and arrays. The approach presented in [1, 2] uses predicate abstraction to
compute under-approximations of programs. In contrast, we use symbolic exe-
cution and shape abstractions with the goal of error detection. And unlike [1,2]
and also over-approximation based predicate abstraction techniques, which re-
quire the a priori computation of the abstract program transitions, regardless of
the size of the reachable state space, our approach uses abstraction only during
state matching and it involves only the reachable states under analysis.

In previous work [20] we developed a technique for finding guaranteed feasi-
ble counter-examples in abstracted Java programs. That work addresses simple
numeric abstractions (not shape abstractions as we do here) and it did not use
symbolic execution for program analysis.

Program analysis based on symbolic execution has received a lot of attention
recently, e.g. [8,15,24] - however all these approaches don’t address state match-
ing. Symstra [26] uses symbolic execution over numeric data and subsumption
checking for test generation; we generalize that work with subsumption for un-
initialized complex data; in addition, we use abstraction to further reduce the
explored symbolic state space.

The works in [18,27] propose abstractions for singly linked lists that are sim-
ilar to the one described in this paper; however, unlike ours, these abstractions
don’t account for the numeric data stored in the summarized list elements. Re-
cent work for summarizing numeric domains [9,10] addresses that in the context
of arrays and recursive data structures. The work presented in [5] proposes
to use predicate abstraction based model checking to programs that manipu-
late heap structures. However, these approaches use over-approximation based
abstractions and it is not clear how to generate feasible counter-examples that
expose errors.

2 Background

Java PathFinder JPF [13, 25] is an explicit-state model checker for Java pro-
grams that is built on top of a custom-made Java Virtual Machine (JVM). By
default, JPF stores all the explored states, and it backtracks when it visits a
previously explored state. Alternatively, the user can customize the search (by
forcing the search to backtrack on user-specified conditions) and it can specify
what part of the state (if any) to be stored and used for matching. We used
these features to implement (abstract) subsumption checking.

4 Saswat Anand, Corina S. Păsăreanu, and Willem Visser

Symbolic Execution in Java PathFinder Symbolic execution [16] allows one
to analyze programs with un-initialized inputs. The main idea is to use symbolic
values, instead of actual (concrete) data, as input values and to represent the
values of program variables as symbolic expressions. As a result, the outputs
computed by a program are expressed as a function of the symbolic inputs.

The state of a symbolically executed program includes the (symbolic) values
of program variables, a path condition (PC) and a program counter. The path
condition accumulates constraints which the inputs must satisfy in order for an
execution to follow the corresponding path.

In previous work [14,19], we extended JPF to perform symbolic execution for
Java programs. The approach handles recursive data structures, arrays, numeric
data and concurrency. Programs are instrumented to enable JPF to perform sym-
bolic execution; concrete types are replaced with corresponding symbolic types
and concrete operations are replaced with calls to methods that implement cor-
responding operations on symbolic expressions3. Whenever a path condition is
updated, it is checked for satisfiability using an appropriate decision procedure.
We use the Omega library [22] for linear integer constraints, but other decision
procedures can be used. If the path condition is unsatisfiable, the model checker
backtracks. Note that if the satisfiability of the path condition cannot be de-
termined (i.e., as it may be undecidable), the model checker still backtracks.
Therefore, the model checker explores only feasible program behaviors, and all
counterexamples to safety properties are preserved.

As described in [14], the approach is used for finding counterexamples to
safety properties and for test input generation. For every counterexample, the
model checker reports the input heap configuration (encoding constraints on
reference fields and array indices), the numeric path condition (and a satisfying
solution), and thread scheduling, which can be used to reproduce the error.

Lazy Initialization Symbolic execution of a method is started with inputs
that have un-initialized fields; lazy initialization is used to assign values to these
fields, i.e., fields are initialized when they are first accessed during the method’s
symbolic execution. This allows symbolic execution of methods without requiring
an a priori bound on the number of input objects.

When the execution accesses an un-initialized reference field, the algorithm
nondeterministically initializes the field to null, to a reference to a new object
with uninitialized fields, or to a reference of an object created during a prior
field initialization; this systematically treats aliasing.

Lazy initialization for arrays proceeds in a similar way. Input arrays are
represented by a collection of initialized array cells and a symbolic value repre-
senting the array’s length. Each cell has a symbolic index and a symbolic elem
value. When symbolic execution accesses an un-initialized cell, it initializes it
nondeterministically to a new cell or to a cell that was created during a prior
initialization; the path condition is updated with constraints that ensure that
3 The interested reader is referred to [14] for a detailed description of the code instru-

mentation

Symbolic Execution with Abstract Subsumption Checking 5

class Node {

int elem;

Node next; ...

Node find(int v){

1: Node n = this;

2: while(n != null){

3: if(n.elem > v) return n;

4: n = n.next;

}

5: return null;

}}

Fig. 1. Example illustrating symbolic execution with abstract subsumption checking

the index is within the array bounds and index of the the cell equals to the index
that was accessed.

Method preconditions are used during lazy initialization to ensure that the
method is executed only on valid inputs.

3 Example

We illustrate symbolic execution with abstract subsumption checking on the
example from Figure 1. Class Node implements singly-linked lists of integers;
fields elem and next represent, respectively, the node’s value and a reference to
the next node in the list. Method find returns the first node in the list whose
elem field is greater than v. Let us assume for simplicity that the method has as
precondition that the input list (pointed to by this) is non-empty and acyclic.
We check if null pointer exceptions can be thrown in this program.

Figure 2 illustrates the paths that are generated during the symbolic execu-
tion of method find (we have omitted some intermediate states). Each symbolic
state consists of a heap structure and the path condition (PC) accumulated along
the execution path. A “cloud” in the figure indicates that the segment of the
list pointed to by the next field is not yet initialized. The heap structures repre-
sent constraints on program variables and reference fields, e.g. the structure in
s1 represents all the lists that have at least one (non-null) element such that n
points to the head of the list.

Branching corresponds to a nondeterministic choice that is introduced to
build a path condition or to handle aliasing, during lazy initialization. For ex-
ample, when the numeric condition at line 3 is executed symbolically there is a
branch in execution for each possible outcome of the condition’s evaluation (e.g.
states s2 and s3). As mentioned, branching is also introduced by lazy initializa-
tion: for example, at line 4 the next field is accessed for the first time so it is
initialized according to all the possible aliasing relationships in the inputs: on
one branch, the “cloud” is replaced with a new node, whose next field points
to a “cloud”, while on the other branch, the cloud is replaced with null (e.g.

6 Saswat Anand, Corina S. Păsăreanu, and Willem Visser

n

n

n

n

n

n

n

n

n

n

this nextnext

nextnext
this

this

this

PC: true

next

next
this

next

this next next next

this
next

nextnext next nextthis
null

n

next next nextthis

next next next

n

this next next nextthis

n

next null

next

nullnext next

this

this

Summary

}

}at line 3
Update PC

Initialize next
at line 4

Matched

v2v1

v1 v2

v1

v1

v1 v2 v3

v1

v4v2v1 v2
v1 v3

v1
v2 v3

v1 v2 v3

v1

v1

v2

v2v1

s6

�����
v1 ≤ v ∧ v2 ≤ v

s4

�����
v1 ≤ v

s1

�����
v1 ≤ v ∧ v2 > v

�����
v1 > v

v3

�����
v1 ≤ v ∧ v2 ≤ v ∧ v3 > v

s2

�����
v1 ≤ v

s7

s12

�����
v1 ≤ v ∧ v2 ≤ v

s10

s8

s11

�����
v1 ≤ v ∧ v2 ≤ v

s9

�����
v1 ≤ v

s3

s5

�����
v1 ≤ v ∧ v2 ≤ v ∧ v3 ≤ v

�����
v1 ≤ v ∧ v2 ≤ v ∧ v3 ≤ v

s13

�����
v1 ≤ v ∧ v2 ≤ v ∧ v3 ≤ v

Fig. 2. State space generated during symbolic execution of find (excerpts)

states s4 and s5). Note that if we wouldn’t have imposed the precondition that
the input list is acyclic, there had been a third branch corresponding to next
pointing to itself.

The (symbolic) state space for this example is infinite and there is no sub-
sumption between the generated symbolic states. However, if we use abstraction,
the symbolic state space becomes finite. The list abstraction summarizes con-
tiguous node segments that are not pointed to by local variables into a summary
node. Since the number of local variables is finite, the number of abstract heap
configurations is also finite. For the example, two nodes in state s12 are mapped
to a summary node. As a result, the abstract state is subsumed by previously
stored state s8, at which point the model checker backtracks. The analysis ter-
minates reporting that there are no null pointer exceptions. Note that due to
abstract matching, the model checker might miss feasible behaviors. However,
for this example, the abstraction is in fact exact – there is no loss of precision

Symbolic Execution with Abstract Subsumption Checking 7

due to abstraction (all the successors of s12 are abstracted to states that are
subsumed by the states depicted in Figure 2).

4 Subsumption for Symbolic States

In this section we describe a method for comparing symbolic states. This method
is used in our framework for state matching, during symbolic execution. The
method is also used for comparing abstracted symbolic states (as described in
the next section).

Symbolic states represent multiple concrete states, therefore state matching
involves checking subsumption between states. A symbolic state s1 subsumes
another symbolic state s2, if the set of concrete states represented by s1 contains
the set of concrete states represented by s2.

Symbolic State Representation A symbolic state s consists of a symbolic
heap configuration H and a path condition PC. The symbolic state also contains
the program counter and thread scheduling information, which we ignore here for
simplicity. Heap configurations may be partially initialized. Let R and F denote
the set of all reference variables and object fields in the program respectively.
We also assume that heap configurations are garbage free.

Definition 1. A symbolic heap configuration H is a graph represented by a tuple
(N, E). N is the set of nodes in the graph, where each node corresponds to a heap
cell or to a reference program variable. N = NO ∪R ∪ {null,uninit} where:

– null and uninit are distinguished nodes that represent respectively, null and
objects not yet initialized.

– NO is the set of nodes representing dynamically allocated objects.

E is the set of edges in H such that E = EF ∪ ER where:

– EF ⊆ (NO×F ×(N \R)) represent selector field edges. An edge (n1, f, n2) ∈
EF denotes that field f of the object represented by n1 points to the object
represented by n2.

– ER ⊆ (R × (NO ∪ {null})) represent points-to edges. An edge (r, n1) ∈ ER

represents the fact that reference variable r points to the object represented
by n1.

A symbolic heap configuration represents a potentially infinite number of
concrete heaps through the uninit node. Let γ(HS) denote all the concrete heaps
H represented by HS . For symbolic heaps H2, H1: H2 subsumes H1 iff γ(H1) ⊆
γ(H2).

A symbolic state also includes the valuation for the primitive typed fields
(described later in this section) and the program counter. We check subsump-
tion only for states that have the same program counter; checking subsumption
involves checking (1) subsumption for heap configurations (where we ignore the
valuation of the primitive typed fields) and (2) valid implication between the
numeric constraints encoded in the symbolic states.

8 Saswat Anand, Corina S. Păsăreanu, and Willem Visser

Data: Heap Configurations H1 = (NH1 , EH1),H2 = (NH2 , EH2)
Result: true if H2 subsumes H1, false otherwise; also builds labeling l for

matched nodes
wl1 := {n such that (r, n) ∈ EH1

R }, wl2 := {n such that (r, n) ∈ EH2
R };

while wl2 is not empty do
if wl1 is empty then return false;
n1 := get(wl1), n2 := get(wl2);
if n2 = uninit then continue;
if n1 = uninit then return false;
if (l(n2) 6= null ∨ l(n1) 6= null) ∧ l(n2) 6= l(n1) then return false;
/* n1, n2 matched before: */
if (l(n2) 6= null ∧ l(n1) = l(n2)) then continue;
if n1 = null ∧ n2 = null then continue;
if n1 6= null ∧ n2 6= null then

l(n2) := l(n1) := new label();
add successors of n1, n2 to wl1, wl2 respectively in the same order;

end
else return false;

end
if wl1 is not empty then return false;
return true;

Algorithm 1: Subsumption for Heap Configurations

Subsumption for Heap Configurations In order to check if a program state
s2 = (H2, PC2) subsumes another program state s1 = (H1, PC1), we first check
if heap configuration H2 subsumes heap configuration H1. Intuitively, H2 sub-
sumes H1 if H2 is “more general” (i.e., represents more concrete heap configura-
tions) than H1. Subsumption for heap configurations is described in Algorithm 1.
The algorithm traverses the two heap graphs at the same time, in the same or-
der, starting from the roots and trying to match the nodes in the two structures.
Each of the reference variables from R represents a root of the heap. We impose
an order on the reference variables and the heap graph is traversed from each of
the roots in that order. The algorithm maintains two work lists wl1 and wl2 to
record the visited nodes; the lists are initialized with the heap objects pointed
to by the variables in R; get and add are list operations that remove the first
element and add an element to the end of the list, respectively.

The algorithm also labels the heap nodes during traversal, such that two
matched nodes have the same unique label. These labels are used for checking
state subsumption (as discussed below). Let l : (NH1

O ∪NH2
O) → L∪{null}, where

L is a set of labels {l1, l2, l3...}. If H2 subsumes H1 with a labelling l, we write
H2 wl H1. If the algorithm finds two nodes that cannot be matched, it returns
false. Moreover, whenever an uninitialized H2 node is visited during traversal,
the algorithm backtracks, i.e., successors of the node in H1 that matches this
uninitialized node are not added to the worklist; the intuition is that an unini-
tialized node uninit in H2 can be matched with an arbitrary subgraph in H1.
However, an uninitialized node in H1 can only match an uninitialized node in H2.

Symbolic Execution with Abstract Subsumption Checking 9

this

null null

left right

rightleft

nullnull

rightleft

rightleft

this
nextnext

nextnext next

Matched Not matched

l1 : l2 :

H1 : H2 :

µ :

l1 : l2 :H1 :

H2 :

Fig. 3. Matched and unmatched heap configurations; l1 and l2 label matched nodes.

Note that nodes in H1 which were not visited due to matching with uninitialized
nodes are not labeled (i.e. they have null labels). As an example, Figure 3 shows
the heap configurations for two matched lists and two unmatched binary trees.
Figure 3 (left) illustrates the labeling for the two matched lists.

Theorem 1. If Algorithm 1 returns true and labeling l for inputs H1 and H2

then H2 wl H1.

Note that Algorithm 1 works on shapes represented as graphs that are deter-
ministic, i.e. for each node, there is at most one outgoing edge for each selector
field. Therefore, the algorithm applies to concrete heap shapes as well as partially
initialized symbolic heap shapes (representing, linked lists, trees, etc.). The same
algorithm also works on the abstractions for singly linked lists and arrays that
we present in the next section (since our abstractions preserve the deterministic
nature of the heap).

Checking Validity of Numeric Constraints Shape subsumption is only a
pre-requisite of state subsumption: we also need to compare the numeric data
stored in the symbolic states. Let primfld(n) denote all the fields of node n that
have primitive types. For the purpose of this paper, we consider only integer
types, but other primitive types can be handled similarly, provided that we have
appropriate decision procedures; valS(n, f) denotes the (symbolic) value stored
in the integer field f of node n in state S.

Definition 2. The “valuation” of a symbolic state s parameterized by labeling
l : NO → N is defined as:

val(s, l) =
∧

n∈NOs.t.l(n)6=null
f∈primfld(n)

fn(l(n), f) = vals(n, f).

Where fn(label, field) returns a fresh name that is unique to (label, field) pair.

Let vs denote all the symbolic names that are used in symbolic state s;
this includes both the values stored in the heap and the values that appear in
the path condition. In order to check validity for the numeric constraints, we
use existential quantifier elimination for these symbolic variables to obtain the
numeric constraints for a symbolic state.

10 Saswat Anand, Corina S. Păsăreanu, and Willem Visser

thisthis
next next next next nextv1 v3 v2

valuation : e1 = v1 ∧ e2 = v3

PC : v1 < v3 ∧ v3 < v2

s1 :

v1 v2

valuation : e1 = v1 ∧ e2 = v2

PC : v1 ≤ v5 ∧ v5 ≤ v2

s2 :

l2 :l1 : l1 : l2 :

Fig. 4. State Subsumption

We are now ready to describe subsumption checking for symbolic states.
A state s1 = (H1, PC1) is subsumed by another state s2 = (H2, PC2) (or s2

subsumes s1) if

1. H2 wl H1 and
2. ∃vs1 .val(s1, l) ∧ PC1 ⇒ ∃vs2 .val(s2, l) ∧ PC2.

The complexity for one subsumption step includes the complexity of heap
traversal (O(n) where n is the size of the heap) and the complexity for checking
numeric constraints. While the cost of checking numerical constraints cannot be
avoided, we believe that the cost of heap traversal can be somewhat alleviated
if it is performed during garbage collection. However we need to experiment
further with this idea.

As an example, consider two symbolic states in Figure 4, where s1 is sub-
sumed by s2. The corresponding heap configurations were matched and labeled
as described before (H2 subsumes H1). The valuation encodes the constraints
for the numeric fields, e.g. for the first list e1 = v1 ∧ e2 = v3 encodes that the
elem field of the node labeled by l1 (denoted by e1) has symbolic value v1 while
the elem field of the node labeled by l2 (denoted by e2) has symbolic value v3.
The path condition puts further constraints on the symbolic values v1 and v3.
The path conditions may contain symbolic values that are not stored in the heap
(e.g. v5 in s2) according to the program path that led to the symbolic state.

For state comparison, we “normalize” the numeric constraints, i.e., we use
the Omega library for existential quantifier elimination – intuitively, for this
example, we are only interested in the relative order of the data stored in the
matched heap nodes. For s1 we compute ∃v1, v3, v2 : e1 = v1 ∧ e2 = v3 ∧ v1 <
v3 ∧ v3 < v2 which simplifies to e1 < e2. Note that since the third node in the
list in s1 was not matched it is not represented in the constraint. Similarly, for
s2, ∃v1, v2, v5 : e1 = v1 ∧ e2 = v2 ∧ v1 ≤ v5 ∧ v5 ≤ v2 simplifies to e1 ≤ e2. And
as e1 < e2 ⇒ e1 ≤ e2 is valid and H2 subsumes H1, s2 subsumes s1.

5 Abstractions

5.1 Abstraction for Singly Linked Lists

The abstraction that we have implemented is inspired by [18,27] and it is based
on the idea of summarizing all the nodes in a maximally uninterrupted list seg-
ment with a summary node. The main difference between [18, 27] and the ab-
straction presented here is that we also keep track of the numeric data stored in

Symbolic Execution with Abstract Subsumption Checking 11

the summary nodes and we give special treatment to un-initialized nodes. The
numeric data stored in the abstracted list is summarized by setting the valuation
for the summary node to be a disjunction of the valuations of the summarized
symbolic nodes. Intuitively, a summary node stores the union of the values stored
in the summarized nodes. Subsumption can then be used as before to perform
state matching for abstract states (see Algorithm 1 where summary nodes are
treated in the same way as the heap object nodes).

Definition 3. A node n is defined as an interrupting node, or simply an inter-
ruption if n satisfies at least one of following conditions:

1. n = null
2. n = uninit
3. n ∈ {m such that (r,m) ∈ ER}, ie. n is pointed to by at least one reference

variable.
4. ∃n1, n2 such that (n1, next, n), (n2, next, n) ∈ EF , ie. n must be pointed-to

by at least two nodes (cyclic list).

An uninterrupted list segment is a segment of the list that does not contain
an interruption. An uninterrupted list segment [u, v] is maximal if, (a, next, u) ∈
EF ⇒ a is an interruption and (v, next, b) ∈ EF ⇒ b is an interruption.

The abstraction mapping α between symbolic heap configurations replaces
all maximally uninterrupted list segments in heap H with a summary node in
α(H). If [u, v] is a maximally uninterrupted list segment in H, its abstraction
α(H) is computed from H as follows:

1. Add a new summary node nsum to the set of nodes NH
O .

2. If there is an edge (a, next, u) ∈ EH
F replace (a, next, u) by (a, next, nsum).

3. If there is an edge (v, next, b) ∈ EH
F replace (v, next, b) by (nsum, next, b).

4. Remove all nodes m in the list segment [u, v] from NH
O and all edges incident

on m or going out of m.

Note that the edges between the nodes in the list segment, which is replaced
by a summary node, are not represented in the abstraction α(H). With this
abstraction, Algorithm 1 is used to check subsumption for abstracted heaps.

In order to check validity of numeric constraints, the definition of valuation
is modified as follows:

Definition 4. Valuation for an abstract state s, parameterized by labeling l is
defined as,

valabs(s, l) =
∧

n∈(NO\NS)s.t.l(n) 6=null
f∈primflds(n)

fn(l(n), f) = vals(n, f)

∧

nsum∈NSs.t.l(n) 6=null

∨

t∈sumnodes(nsum)
f∈primflds(t)

fn(l(nsum), f) = vals(t, f)

where, NS ⊆ NO represents the set of summary nodes in NO, and sumnodes(nsum)
denotes the set of nodes that are summarized by nsum.

12 Saswat Anand, Corina S. Păsăreanu, and Willem Visser

n
n

this this

Summary

next nextnextnextnext nextnext
v2 v4v2v1

v3v1 v3

l1 : l3 :l2 :

�����
v1 ≤ v ∧ v2 ≤ v

���	�
���� ��� �
e1 = v1 ∧ e2 = v2 ∧ e3 = v3

�����
���� ��� �
e1 = v1 ∧ e2 = (v2 ∨ v3) ∧ e3 = v4�����

v1 ≤ v ∧ v2 ≤ v ∧ v3 ≤ v

l1 : l2 : l3 :

s12s8

Fig. 5. Abstract subsumption between s8 and s12

Example To illustrate the approach, let us go back to the example presented
in Section 3. Figure 5 depicts the abstraction for state s12 and the valuation for
the abstracted heap configuration. The abstracted state is subsumed by state
s8. Note that we don’t explicitly summarize list segments of size one (e.g. the
second list element in s8) - in this case, the abstracted and the un-abstracted
versions of a symbolic state are in fact the same.

Discussion Note that the list abstraction ensures that the number of possi-
ble abstract heap configurations is finite; however, it is still possible to have an
infinite number of different constraints over the numeric data. Also note that
the focus here is on abstracting heap structures, more specifically lists, and the
numeric data stored in these structures. Therefore we ignored here the numeric
values of local program variables, which may also be unbounded (they are cur-
rently discarded in the abstracted state). To address these issues, we plan to use
predicate abstraction in conjunction with the abstractions presented here. This
is the subject of future work.

As mentioned, the list abstraction that we use preserves the deterministic na-
ture of the heap; therefore we can use Algorithm 1 for checking subsumption for
abstract heap structures. However, this is not true in general for other abstrac-
tions (e.g. in a tree abstraction, a summary node may have multiple outgoing
edges for the same selector field). In the future we plan to study the decidabil-
ity of subsumption checking for more general heap abstractions – see e.g. [17] –
and we plan to extend our approach to these cases (e.g. through a conservative
approximation of the algorithm for subsumption checking).

5.2 Abstraction for Arrays

We extended our framework with subsumption checking and an abstraction for
arrays of integers. The basic idea is to represent symbolic arrays as singly linked
lists and to apply the (abstract) subsumption checking methods developed for
lists. Specifically, we maintain the arrays as singly linked lists, which are sorted
according to the relative order of the array indices. Consecutive (initialized) ar-
ray elements are represented as linked nodes. Summary nodes are introduced
between array elements that are not consecutive. These summary nodes model
zero or more un-initialized array elements that may possibly exist in the (con-
crete) array. We must note that this is only one particular abstraction, and there

Symbolic Execution with Abstract Subsumption Checking 13

may be others – we adopt this one because in this way we can leverage on our
abstraction techniques for lists.

With this list representation we apply subsumption as before. However, the
“roots” are now integer program variables that are used to index the array and
the special summary nodes are treated as “normal” heap objects that contain
unconstrained values. Abstraction is applied in a way similar to abstraction
for linked lists. The interruptions are extended to contain the special summary
nodes that were introduced to model un-initialized array segments. Note that
subsumption becomes “approximate”, i.e., we might miss the fact that a state
subsumes another, but it is never the case that we say that a state subsumes
another state incorrectly.

Array representation A symbolic array A is represented by a a collection of
array cells and a symbolic value len representing the array length. Each array
cell c is a tuple (index, elem): index is a symbolic value representing the index
in the array and elem is a symbolic value representing the value stored in the
array at position index.

The array cells are stored in a singly linked list which is sorted according to
the relative order of the indices of the cells. Each list element corresponds to an
array cell in A. Given array cell c, let index(c) and elem(c) denote the index
and the value of c; also let next(c) denote the cell that is next to c in the list.

The following invariants hold for the list.

1. index of first node is greater than or equal to 0.
2. index of last node is less than len.
3. For each array cell c, other than the last cell, index(c) < index(next(c)).

Note that our implementation maintains these invariants during lazy initial-
ization, i.e., whenever symbolic execution accesses an un-initialized array cell, it
initializes it non-deterministically to a previously created cell or to a new cell to
be placed either between two existing cells that may not be consecutive, or at the
end or at the beginning of the list. The path condition is also updated to encode
this information. As discussed, in order to check subsumption, we further intro-
duce additional summary nodes between nodes that represent non-consecutive
array elements.

Algorithm 2 ensures that if two array cells c1 and c2 may represent non-
adjacent array elements, then they are represented as list nodes separated by
special summary nodes (n∗). On the other hand, if c1 and c2 represent two
consecutive elements, they are connected directly by a next link. Similarly, if
the first (last) cell of the array may not represent the first(last) element of the
array, a special summary node is added before (after) the node.

With this transformation, we can apply subsumption checking as before.
However, the “roots” of the heap representing the array now include a vari-
able pointing to the head of the list (that represents the array), and all integer
program variables that index array elements. These variables are the analog of

14 Saswat Anand, Corina S. Păsăreanu, and Willem Visser

Data: Sorted linked list HA = (N, E) representing array A
Result: Sorted linked list H ′A = (N ′, E′) that contains additional summary

nodes representing uninitialized consecutive array elements
foreach c in NO do

add c to N ′
O;

if c is the first element in HA ∧ PC ⇒ index(c) = 0 is invalid then
add a special summary node n∗ before c in H ′A;

end
if c is the last element in A ∧ PC ⇒ index(c) = len− 1 is invalid then

add a special summary node n∗ after c in H ′A;
else

next(c) := cell following c in A;
if PC ⇒ index(c) = index(next(c))− 1 is invalid then

add a special summary node n∗ after c in A′;
end

end

end
Algorithm 2: Building sorted linked lists representing symbolic arrays

the reference variables r ∈ R, and are denoted by I. vals(i), i ∈ I denotes the
(symbolic) value of i.

Abstraction over arrays is very similar to the one used for lists. It summarizes
maximally uninterrupted segments corresponding to consecutive array elements.
However, the definition for an interruption is slightly different, as it considers
the special summary nodes introduced by Algorithm 2 as interruptions.

Definition 5. A node c in is an interruption if c = n∗, orc=null, or c represents
an array cell such that ∃i ∈ I.vals(i) = index(c).

Abstraction involves replacing all uninterrupted segments with a summary
node (similar to list abstraction). Note that this abstraction can be improved
further, by mapping all contiguous segments of (summary and non-summary)
nodes that are not pointed to by local variables to a (new) summary node.

Example Consider the symbolic array in Figure 6 (a): v0..v5 are symbolic values
stored in the initialized array elements. The concrete values 0..3 and the symbolic
values j and n are array indices. Note that j and n are constrained by the path
condition; len is a symbolic value representing the array length. Local program
variables lo and hi are used to index the array. Figure 6 (b) shows the list
representation for the symbolic array. The list is sorted according to the relative
order of indices.

In the example the first four array elements are represented by nodes that
are directly connected, as they have consecutive indices. However, the 5th array
element is separated from the other nodes by two summary nodes (marked with
a “*”). Note that unlike uninit nodes, these summary nodes are not completely
unconstrained (we know their relative order in the array). We use the Omega

Symbolic Execution with Abstract Subsumption Checking 15

lo hi

hilo

a

a

3

a:

n0 1 2 j

(a) Symbolic array:

lo hi

(b) List representation:

(c) Abstraction:

v3v1v0 v2 v4 v5

����� ��� �
	��� � ��	��
3 < j < len ∧ n = len − 1

v0 v1 v2 v3 v4 v5

��

v0 v1 ∨ v2 v3 v4 v5

��

Fig. 6. A symbolic array (a), its list representation (b) and its further abstraction (c)

library to decide if two elements have consecutive indices (in which case they are
directly connected in the list). Figure 6 (c) shows the abstracted list, obtained
with the method described before, where we consider the two variables lo and
hi as interruptions; the “*” nodes are also considered interruptions.

6 Experiments

We have implemented (abstract) subsumption checking on top of the symbolic
execution framework implemented in JPF; the implementation uses the Omega
library as a decision procedure. We applied our framework for error detection in
two Java programs, that manipulate lists and arrays respectively.

The first program, shown in Fig. 7(a), is a list partition taken from [6]. The
method takes as input an acyclic linked list l and an integer v and it removes all
the nodes whose elem fields are greater than v; the removed elements are stored
in a new list, which is pointed to by newl. A post-condition of the method is that
each element in the list pointed to by l after method’s execution must be less
than or equal to v. This post-condition is not satisfied for the buggy program.

In order to apply symbolic execution, we first instrumented the code, as
shown in Fig. 7(b). Concrete types are replaced with symbolic types (library
classes that we provide), and concrete operations are replaced with method calls
that implement equivalent symbolic operations. For example, classes SymList
and SymNode implement symbolic Lists and Nodes respectively, while class
Expression supports manipulation of symbolic integers.

Method ifSubsumed checks for state subsumption. It takes an integer argu-
ment that denotes the program counter, and it returns true only if the current
program state is subsumed by a state which was observed before at that pro-
gram point. If ifSubsumed returns true, then the model checker backtracks (as
instructed by the Verify.ignoreIf method); otherwise, the current state is
stored for further matching and the search continues. check() and its symbolic
version symCheck() checks if the method’s post-condition is satisfied.

16 Saswat Anand, Corina S. Păsăreanu, and Willem Visser

class ListPartition{

List list = new List();

Node l = list.root;

Node curr, prev, newl, nextCurr;

int v;

public void partition(){

prev = newl = null;

curr = l;

while(curr != null){

nextCurr = curr.next;

if(curr.elem > v){

//if(prev != null &&

// nextCurr != null) //bug

if(prev != null) //fix

prev.next = nextCurr;

if(curr == l) l = nextCurr;

curr.next = newl;

newl = curr;

}

else prev = curr;

curr = nextCurr;

} check();} }

(a) Original code

class ListPartition{

SymList list = new SymList();

SymNode l = list.root();

SymNode curr, prev, newl, nextCurr;

Expression v = new SymbolicInteger();

public void partition(){

prev = newl = null;

curr = l;

while(curr != null){

Verify.ignoreIf(ifSubsumed(1));

nextCurr = curr.get_next();

if(curr.elem()._GT(v)){

//if(prev != null &&

// nextCurr != null) //bug

if(prev != null) //fix

prev.set_next(nextCurr);

if(curr == l) l = nextCurr;

curr.set_next(newl);

newl = curr;

}

else prev = curr;

curr = nextCurr;

} symCheck(); } }

(b) Instrumented code

Fig. 7. List Partition Example.

Symbolic execution with abstract subsumption checking discovers the bug
and it reports a counterexample of 10 steps, for an input list that has two
elements, such that the first element is ≤ v, and the second element is > v.

The second program, shown in Fig. 8(a), is an array partition taken from [1].
It is a buggy version of the partition function used in the QuickSort algorithm,
a classic example used to study test generation. The function permutes the
elements of the input array so that the resulting array has two parts: the first
part contains values that are less than or equal to the chosen pivot value a[0];
while the second part has elements that are greater than the pivot value. There
is an array bound check missing in the code at line L2 that can lead to an array
bounds error. The corresponding instrumented code is shown in Fig. 8(b) – class
SymbolicIntArray implements symbolic arrays of integer, while ArrayIndex
implements symbolic integers that are array indexes.

Symbolic execution with abstract subsumption checking reports a counterex-
ample of 30 steps, for an input array that has four elements.

We also analyzed the corrected versions of the two partition programs to
see whether symbolic execution with abstract subsumption checking terminates
when the state-space is infinite, which is the case for the two programs. The

Symbolic Execution with Abstract Subsumption Checking 17

class ArrayPartition{

int[] a;

int n, tmp, pivot;

int lo;

int hi;

public void parition(){

//assume (n > 2);

pivot = a[0];

lo = 1;

hi = n-1;

while(lo <= hi){

L2: //while(a[lo] <= pivot) //bug

while(lo <= hi &&

a[lo] <= pivot) //fix

lo++;

while(a[hi] > pivot)

hi--;

if(lo < hi){

tmp = a[hi];

a[hi] = a[lo];

a[lo] = tmp;

} } } }

(a) Original code

class ArrayPartition{

SymbolicIntArray a;

Expression pivot, n, tmp;

ArrayIndex lo = new ArrayIndex("lo");

ArrayIndex hi = new ArrayIndex("hi");

public void partition(){

Verify.ignoreIf(n._LE(2));

pivot = a.get(0);

lo.assign(new IntegerConstant(1));

hi.assign(n._minus(1));

while(lo.index()._LE(hi.index())){

Verify.ignoreIf(ifSubsumed(1));

L2: //while(a.get(lo)._LE(pivot)){ //bug

while(lo.index()._LE(hi.index()) &&

a.get(lo)._LE(pivot)){ //fix

Verify.ignoreIf(ifSubsumed(2));

lo.assign(lo.index()._plus(1));

}

while(a.get(hi)._GT(pivot)){

Verify.ignoreIf(ifSubsumed(3));

hi.assign(hi.index()._minus(1));

}

if(lo.index()._LT(hi.index())){

Expression tmp = a.get(hi);

a.set(hi, a.get(lo));

a.set(lo, tmp);

} } } }

(b) Instrumented code

Fig. 8. Array Partition Example

state-exploration indeed terminates without reporting any error. For the list par-
tition the analysis checked subsumption 23 times of which 11 states were found
to be subsumed (12 unique states were stored). For the array partition the re-
spective numbers were: 30 checks, with 17 subsumed and 13 states stored. This
demonstrates the effectiveness of the abstractions in limiting the state space. We
should note that subsumption checking without abstraction is not sufficient to
limit the state space. This is in general the case for looping programs. Although
in theory, we should check for subsumption at every program point to get max-
imum savings, it may be very expensive. In all our experiments, we checked for
subsumption inside every loop only once, before the body of the loop is executed.

We should note that these simple preliminary experiments show only the
feasibility of the approach. A lot more experimentation and engineering is needed
to be able to assess the merits of the approach on realistic programs. We should
note that even for such small examples, traditional testing methods would not

18 Saswat Anand, Corina S. Păsăreanu, and Willem Visser

discover the errors easily (e.g. a test-suite which gives 100% statement, or branch
coverage might not be able to detect the errors).

7 Conclusion

We described a state space exploration approach that uses symbolic execution
and subsumption checking for the analysis of programs that manipulate heap
structures and arrays. The approach explores only feasible program behaviors.
We also defined abstractions for lists and arrays, to further reduce the explored
symbolic state space. We implemented the approach in the Java PathFinder tool
and we applied it for error detection in Java programs.

The approach presented here is complementary to over-approximation ab-
straction methods and it can be used in conjunction with such methods, as an
efficient way of discovering counter-examples that are guaranteed to be feasible.
We view the integration of the two approaches as an interesting topic for future
research. For the future, we plan to investigate how/if our approach extends
to other shape abstractions and to use predicate abstraction for the numeric
program data. We also plan to use our technique for systematic generation of
complex test inputs (similar to [14]) and to characterize when there is loss of
precision introduced by abstraction, for automatic abstraction refinement (simi-
lar to [21]). Moreover we plan to investigate the use of subsumption checking for
compositional analysis of large programs. The presented abstractions were used
in the context of falsification; however, we believe that they have merit in the
context of verification - this could be achieved by storing the abstracted state
and starting the symbolic execution from this abstracted state.

References

1. T. Ball. A theory of predicate-complete test coverage and generation. MSR-TR-
2004-28, 2004.

2. T. Ball, O. Kupferman, and G. Yorsh. Abstraction for falsification. In Proc. of
CAV’05, 2005.

3. T. Ball and S. K. Rajamani. The slam toolkit. In Proc of CAV ’01, 2001.
4. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of

software components in C. ACM Trans. Computer Systems, 30(6):388–402, 2004.
5. D. Dams and K. S. Namjoshi. Shape analysis through predicate abstraction and

model checking. In Proc. VMCAI, 2003.
6. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In

Proc. POPL, 2002.
7. R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic graph? a shape analysis

for heap-directed pointers in c. In Proc of POPL, pages 1–15, 1996.
8. P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random testing.

In Proc. PLDI, 2005.
9. D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with

summarized dimensions. In Proc. TACAS, 2004.
10. D. Gopan, T. Reps, and M. Sagiv. Numeric analysis of arrays operations. In Proc.

32nd POPL, 2005.

Symbolic Execution with Abstract Subsumption Checking 19

11. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with
blast. In Proc. of SPIN’03, volume 2648 of LNCS, 2003.

12. G. J. Holzmann and R. Joshi. Model-driven software verification. In Proc. 11th
SPIN Workshop, volume 2989 of LNCS, Barcelona, Spain, 2004.

13. Java PathFinder. +http://javapathfinder.sourceforge.net+.
14. S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution for

model checking and testing. In Proc. TACAS’03, Warsaw, Poland, April 2003.
15. S. Khurshid and Y. Suen. Generalizing symbolic execution to library classes. In

Proc. 6th PASTE, 2005.
16. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–

394, 1976.
17. V. Kuncak and M. Rinard. Existential heap abstraction entailment is undecidable.

In Proc. of SAS, 2003.
18. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and

canonical abstraction for singly-linked lists. In Proc. VMCAI, Paris, 2005.
19. C. Pasareanu and W. Visser. Verification of java programs using symbolic execution

and invariant generation. In Proc of SPIN’04, volume 2989 of LNCS, 2004.
20. C. S. Păsăreanu, M. B. Dwyer, and W. Visser. Finding feasible abstract counter-

examples. STTT, 5(1):34–48, November 2003.
21. C. S. Păsăreanu, R. Pelánek, and W. Visser. Concrete model checking with abstract

matching and refinement. In Proc. CAV’05, 2005.
22. W. Pugh. The Omega test: A fast and practical integer programming algorithm

for dependence analysis. Commun. ACM, 31(8), Aug. 1992.
23. S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued

logic. TOPLAS, 2002.
24. K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine for c. In

Proc. 5th ACM Sigsoft ESEC/FSE, 2005.
25. W. Visser, K. Havelund, G. Brat, S. J. Park, and F. Lerda. Model checking pro-

grams. Automated Software Engineering Journal, 10(2), April 2003.
26. T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for gener-

ating object-oriented unit tests using symbolic execution. In Proc. TACAS 2005,
2005.

27. T. Yavuz-Kahveci and T. Bultan. Automated verification of concurrent linked lists
with counters. In Proc of SAS, volume 2477 of LNCS, 2002.

